

Две роли КОМПАС-3D в университете: для преподавателя и для студента

Евгений Шестопалов

Роль № 1. КОМПАС-3D как инструмент будущего конструктора

Уже несколько лет я преподаю дисциплину «САПР машин и оборудования» для студентов специальности «Машины и аппараты химических производств», в разрезе которой и осваивается система КОМПАС-3D. Я понимаю, что данная дисциплина не будет существовать вечно. Когда-то она появилась как антитеза курсу, посвященному ручному черчению, а сегодня нет ни одного конструкторского бюро, где не использовался бы компьютер с какой-либо программой, ускоряющей создание чертежей. Таким образом, не за горами время, когда ее разделят между машиностроительным черчением и дисциплинами из серии «Расчет и конструирование ...».

Сегодня Полоцкий государственный университет располагает 150 лицензиями системы КОМПАС-3D с отраслевыми приложениями (из них одна половина строительной конфигурации, а другая — машиностроительной) и 20 лицензиями САПР технологических процессов ВЕРТИКАЛЬ. Они удовлетворяют потребности кафедр самых разных направлений. Например, кому-то установили САПР техпроцессов, а комуто — КОМПАС-3D с библиотекой Трубопроводы 3D.

Этот островок благолепия затерялся среди десятка проектноконструкторских бюро разной направленности, в которых продолжают работать в 2D-пространстве, а любые разговоры на тему 3D вызывают вопрос «а зачем?».

Можно выпить еще не один баррель кофе на презентациях новых программных продуктов, но поменять ситуацию в лучшую сторону — в сторону освоения 3D-технологий — будет нелегко.

Изменится она лишь путем естественной смены поколений и подготовки молодых специалистов, знающих, умеющих и желающих работать по-новому. Последним я и занимаюсь.

Почему я учу КОМПАС-3D

Тому есть две причины: объективная и эмоциональная. Объективным аргументом служит наша отраслевая специфика: мы готовим специалистов для химической и нефтехимической промышленности, а при конструировании объектов в этой сфере процент стандартных деталей существенно переваливает за 90. Поэтому создание трехмерной сборки емкостного аппарата при наличии библиотек, соответствующих нашим нормативным документам, превращается в приятное занятие. То же самое можно сказать и о проектировании технологических установок, существенную часть которого составляет обвязка аппаратов трубопроводами. Появление в КОМПАС-3D библиотеки с элементами трехмерных трубопроводов и соответствующих инструментов многократно ускорило этот процесс.

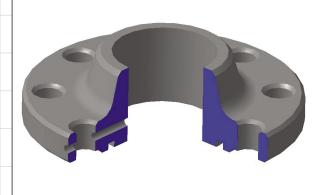
Эмоции же берут верх, когда я вижу, как анонимы с форумов всё созданное у нас с видимым сладострастием оплевывают с порога. По определению. А всё сделанное «у них» превозносят с благоговением. И ладно бы за деньги капитализм на дворе, но ведь от всей души — воистину Иваны, не помнящие родства.

Как я учу КОМПАС-3D

Исходя из того что образование должно хоть немного опережать потребности производства, учу студентов только хорошему трехмерному проектированию. Плохому — черчению плоских изображений — их научат в любом проектно-конструкторском бюро. Я поступал так, когда трехмерные модели играли роль вспомогательных картинок, и еще с большим энтузиазмом делаю это сейчас, когда появилась возможность выполнять конструкторскую документацию без применения проекционного черчения (имею в виду ГОСТ 2.052-2006 и дополнительный набор инструментов КОМПАС-3D, позволяющий оформлять трехмерные объекты точно так же, как это делается в плоских чертежах).

Постоянно убеждаю студентов, что они являются современниками заката длительной, очень плодотворной эры проекционного черчения, которое по значению можно

Евгений Шестопалов


К.т.н., доцент кафедры химической техники Полоцкого государственного университета, преподает дисциплины «САПР машин и оборудования», «Расчет и конструирование машин и аппаратов», «Оборудование НПЗ».

поставить в один ряд с колесом и электричеством.

Выучка — этот термин обычно применяется в армии и характеризует освоение изучаемого материала солдатами: действия должны выполняться без раздумий. В определенном смысле этот подход применим и при работе в системе КОМПАС-3D. Конструктор должен задумываться только над самим изделием, а оформление должно осуществляться на автомате.

Для обеспечения такого уровня освоения САПР я применяю два основных приема:

- сначала работа выполняется исключительно в соответствии с текстом методички. А потом ту же работу необходимо сделать без методички. Обычно во втором случае работа занимает приблизительно в четыре раза меньше времени;
- все самостоятельные задания, которые есть в каждой работе, и задания при защите темы вы-

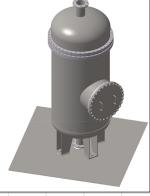


Рис. 1. Фланец

Рис. 2. Реактор в сборе

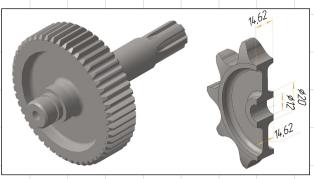


Рис. 3. Вал-шестерня

Рис. 4. Звездочка

полняются с учетом затраченного времени. Иногда это выглядит странно: сидит студент за современным компьютером с большим жидкокристаллическим экраном, а перед ним песочные часы на две минуты. Успел — зачет. Не успел — придется еще потренироваться.

Приведу примеры выполняемых студентами работ.

Создание модели фланца (рис. 1). В учебных целях модель выполняется вручную с использованием максимально возможного количества инструментов КОМПАС-3D. Вводятся свойства детали, оформляется объект спецификации.

Сборка реактора (рис. 2). Осуществляется с применением деталей индивидуального исполнения, измененных стандартных деталей и деталей, взятых из библиотек. Рассматривается последовательность создания и редактирования деталей в сборке. Производится разнесение компонентов. Сборка проверяется на соударения. Особое внимание уделяется автоматическому созданию такого документа, как спецификация.

Создание конструкторской документации. Выполняется в виде трехмерной модели со всеми необходимыми размерами и обозначениями, а также в виде ассоциативных чертежей с уточняющими сечениями и видами на основе модели сборки химического реактора. Работа является продолжением предыдущей.

Работа с библиотекой КОМПАС-Shaft 3D. Тема осваивается студентами с большим интересом, так как в этом семестре они выполняют курсовой проект по «Деталям машин». В соответствии с методичкой создается модель валашестерни (рис. 3) и самостоятельно — модель звездочки (рис. 4). на курсовой проект по «Деталям машин»

Изучение текстового редактора КОМПАС. Все мои попытки доказать студентам, что возможностей изучаемого редактора достаточно для оформления любых конструкторских текстовых документов и что в некоторых случаях он удобнее, чем офисный МЅ Word, идут прахом. Еще раз подтверждается правило: самый лучший программный продукт тот, который освоил первым. Поэтому, встречаясь с ними через год, вижу, что Word победил.

с использованием инструментов КОМПАС-3D, не задействованных в основной работе. При этом на лекции специально не рассказываю о некоторых возможностях программы. В результате закрепляются навыки работы со «Справкой».

Моделирование обвязки аппаратов трубопроводами. В качестве исходного материала студентам выдается модель площадки с расположенным оборудованием. В соответствии с методичкой необходимо создать трубопроводы между аппаратами (рис. 8) и са-

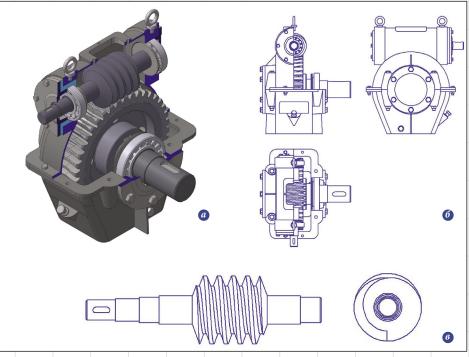


Рис. 5. Редуктор

Работа с 3D-библиотекой редукторов (бесплатная Библиотека проектирования и построения одноступенчатых редукторов, автор — Максим Кидрук. Доступна для скачивания на сайте технической поддержки АСКОН: http://support.ascon.ru).

По причине, изложенной в предыдущем пункте, эта работа вызывает у студентов восторг. В соответствии с методичкой они делают 3D-сборку редуктора (рис. 5a) и его ассоциативные виды (рис. 5б), а также переводят одну из моделей детали в плоский чертеж (рис. 5b). В качестве самостоятельной работы студенты выполняют расчеты и строят сборку в соответствии со своим заданием

Моделирование листовых тел. В соответствии с получаемой специальностью студенты создают мо-

дель пластины пластинчатого теплообменника (рис. 6) и выполняют самостоятельную работу (рис. 7)

мостоятельно сконструировать трубопроводы, отходящие от них.

Раньше в перечень работ входило создание параметризованной модели детали. Пример был полностью взят из книги

Рис. 6. Пластина теплообменника

Рис. 7. Листовая деталь

Олыт использования технологий

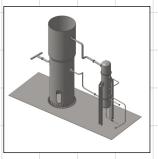


Рис. 8. Площадка с оборудованием

А.Е. Потемкина*. Время шло, а я так и не смог придумать приличного примера на тему химического машиностроения. Больше эту работу мы не выполняем.

Роль № 2 КОМПАС-3D как инструмент лектора

Совершенно другая роль отводится КОМПАС-3D при чтении лекций по дисциплинам «Расчет и конструирование...». Здесь он превращается в инструмент, повышающий наглядность при изучении различных конструкций.

Принимая экзамены, неоднократно наблюдал: хорошо тренированная память студента позволяла легко воспроизводить полный текст конспекта со всеми

Рис. 9. Опора колонны

Сочетание мультимедийного оборудования и КОМПАС-3D изменило процесс чтения лекций революционным образом.

Трехмерные изображения

в лекционном материале

Как раньше читались лекции по техническим дисциплинам, рассказывать не буду — все прошли через разгадывание кроссвордов, создаваемых лектором на доске при помощи мела.

Наличие выполненных заранее трехмерных изображений объектов позволяет начинать новую тему не с рисования и соответственно перерисовывания, а с

увеличить любую часть аппарата (рис. 10*в*).

После того как становится ясно, что все студенты отчетливо представляют внешний вид аппарата и роль его отдельных частей, на экран выводятся плоские изображения необходимых сечений, которые студенты перечерчивают себе в конспект.

Трехмерные анимации в лекционном материале

Устройство аппарата становится еще более понятным, если показать последовательность сборки его частей. До недавнего времени большинство анимаций в презентациях к лекциям я выполнял,

В отличие от PowerPoint. в КОМПАС-3D нет режима, позволяющего демонстрировать созданную анимацию без рабочих панелей экрана. Поэтому при создании роликов приходится осуществлять захват нужной области изображения с помощью, например, программы Snagit. Трудности также возникают с поворотом многоэлементных сборок. Чтобы изменить точку взгляда на объект, приходится делать несколько роликов. всякий раз поворачивая объект в нужное положение. Последующий монтаж роликов, например, в Movie Maker дает возможность довольно подробно показать процесс сборки аппарата.

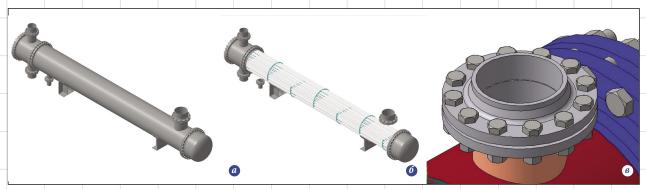


Рис. 10. Кожухотрубчатый теплообменник

необходимыми чертежами, однако стоило задать вопрос на понимание того, что изображено на чертеже, и ситуация резко менялась в худшую сторону. Таким образом, связь между чертежами из конспекта и реальными объектами прослеживается, мягко говоря, не всегда.

* Потемкин А.Е. Твердотельное моделирование в системе КОМПАС-3D. СПб.: БХВ-Петербург, 2004. 512 с.: ил. объяснения работы устройства и назначения отдельных деталей конструкции. При этом объект, например опора колонны, рассматривается со всех сторон (рис. 9а и 96) и с нужными сечениями (рис. 9в).

При необходимости можно сделать невидимым, например, корпус аппарата (рис.10а — все детали видимые, рис. 10б — корпус скрыт), а также существенно

перемещая плоские сечения деталей, с использованием программы PowerPoint.

Сейчас я делаю практически то же самое, но на основе анимаций, выполненных с помощью Библиотеки анимации КОМПАС-3D. Например, для кожухотрубчатого теплообменника (см. рис. 10) были созданы анимации для всех сборочных единиц и соответственно сборки теплообменника в целом.

Заключение

Использование системы КОМПАС-3D в дисциплинах «САПР машин и оборудования» и «Расчет и конструирование» позволяет существенно поднять уровень подготовки молодых специалистов применительно к разным видам будущей работы — инженерконструктор или инженер-эксплуатационщик.